Abstract
Many primary care offices and other medical practices regularly experience long backlogs for appointments. These backlogs are exacerbated by a significant level of last-minute cancellations or "no-shows," which have the effect of wasting capacity. In this paper, we conceptualize such an appointment system as a single-server queueing system in which customers who are about to enter service have a state-dependent probability of not being served and may rejoin the queue. We derive stationary distributions of the queue size, assuming both deterministic as well as exponential service times, and compare the performance metrics to the results of a simulation of the appointment system. Our results demonstrate the usefulness of the queueing models in providing guidance on identifying patient panel sizes for medical practices that are trying to implement a policy of "advanced access."